California Global Warming Solutions Act of 2006

Cement Technical Team

Focused Meeting to
Discuss Mandatory Greenhouse Gas
Emissions Reporting Concepts

April 11, 2007 Sacramento, CA Cal/EPA Headquarters

Cement Technical Team Meeting Overview

- Overview of March 13, 2007 Meeting
- Mandatory GHG Emissions Reporting: Cement Plants
- Cement GHG Emission Estimation Methods
- Current Inventory for Cement
- Cement GHG Emissions Verification
- Next Steps and Schedule

Overview of March 13, 2007 Meeting

Cement Technical Team Meeting: March 13, 2007

- AB 32 Statutory Requirements
- California Climate Action Registry: Cement Reporting Protocol
- Initial Concepts for Mandatory Reporting
- GHG Emission Estimation Methods
- Current Inventory
- Cement GHG Emissions Verification

March 13, 2007 Meeting Emission Sources to Report

- Options for Direct Process-Related Emissions
 - Clinker-Based Approach
 - Kiln-Input Methodology
- Direct GHG Emissions
 - Mobile Sources Annual Fuel Consumption
 - Stationary Combustion CEMS & Fuel Use
 - Fugitive Sources HVAC & Refrigerants Not Relevant
- Indirect Emissions from Purchased Electricity Heat/Steam
- Efficiency Metric (Ton CO₂/Ton Cement)

Mandatory GHG Emissions Reporting: Cement Plants

Mandatory GHG Emissions Reporting: Cement Plants

- Cement Plants
- 11 Total
- Facility Level Reporting
- Direct Process-Related CO₂
 Emissions
 - Default Values
 - Plant-Specific Data
- Direct GHG Emissions
- Indirect GHG Emissions
- Efficiency Metric
 (CO₂/ton cement)

Cement GHG Emission Estimation Methods: Direct Process-Related

Direct Process CO₂ Emissions

- Clinker-Based Methodology
 - California Climate Action Registry (Registry)
 - Intergovernmental Panel on Climate Change (IPCC) 2006 Guidelines
- Clinker Emission Factor
 - Activity Data
 - Default Calculation
 - Plant-Specific Calculation
 - Comparison Values
- CKD Data
- CO₂ Emissions Estimates
- Key Questions

Direct Process CO₂ Emissions

Clinker-Based Methodology: Registry/CSI

Process CO_2 emissions = [(Cli) (EF_{Cli}) + (CKD) (EF_{CKD})]

Where:

Cli = Quantity of clinker produced

EF_{Cli} = Clinker emission factor

CKD = Quantity CKD discarded

 $EF_{CKD} = CKD$ emission factor

Direct Process CO₂ Emissions

Clinker-Based Methodology: IPCC 2006 Guidelines

Process CO₂ emissions = M_{Cl} • EF_{Cli} • CF_{CKD}

Where:

 M_{Cl} = Mass of clinker produced, tons

 EF_{Cli} = Clinker emission factor, tons CO_2 /ton clinker

 CF_{CKD} = CKD correction factor, dimensionless

Clinker Emission Factor: Activity Data

Clinker produced Mass

CaO content of clinker % Range= 60-67%

Non-carbonate CaO Mass

Non-carbonate MgO Mass

EF_{Cli} = [(CaO content – non-carbonate CaO) • Molecular ratio of CO₂/CaO] + [(MgO content – non-carbonate MgO) • Molecular ratio of CO₂/MgO]

Clinker Emission Factor: Default Calculation

```
EF<sub>Cli</sub> = [(CaO content – non-carbonate CaO) ● Molecular ratio of CO2/CaO] + [(MgO content – non-carbonate MgO) ● Molecular ratio of CO2/MgO]
```

Where:

```
CaO Content = 64.5\%
```

Molecular Ratio of $CO_2/CaO = 44g/56g = 0.785$

MgO Content = 1%

Molecular Ratio of $CO_2/MgO = 44g/40g = 1.092$

 $EF_{Cli} = [0.645 \cdot 0.785] + [0.01 \cdot 1.092]$

= $[0.506325 \text{ tons } CO_2 \bullet 1,016 \text{ kg/ton}] + [0.01092 \text{ tons } CO_2 \bullet 1,016 \text{ kg/ton}]$

 $= 514.45 \text{ kg} + 11.10 \text{ kg} = 525 \text{ kg CO}_2/\text{ton clinker}$

Clinker Emission Factor: Plant-Specific Calculation

```
EFCli = [(CaO content – non-carbonate CaO) • Molecular ratio of CO2/CaO] + [(MgO content – non-carbonate MgO) • Molecular ratio of CO2/MgO]
```

Where:

```
CaO Content = 65\%
```

Molecular Ratio of $CO_2/CaO = 44g/56g = 0.785$

MgO Content = 1%

Molecular Ratio of $CO_2/MgO = 44g/40g = 1.092$

```
EF<sub>Cli</sub> = [0.65 • 0.785] + [0.01 • 1.092] =
= [0.51025 tons CO<sub>2</sub> • 1,016 kg/ton] + [0.01092 tons CO<sub>2</sub> • 1,016 kg/ton]
= 518.44 kg + 11.10 kg = 530 kg CO<sub>2</sub>/ton clinker
```

Clinker Emission Factor: Comparison Values

Cement Protocol	IPCC 2006	Registry/CSI	Plant- Specific
Default Clinker Emission	0.5101 ton CO ₂ /ton clinker	0.5167 ton CO ₂ /ton clinker	0.52117 ton CO ₂ /ton clinker
Factor (EF _{Cli})	=518 kg CO ₂ /ton clinker	=525 kg CO ₂ /ton clinker	= 530 kg CO ₂ /ton clinker
Mineral Content in Clinker	CaO = 65%	CaO = 64.5% MgO = 1%	CaO = 65% MgO = 1%

Direct Process CO₂ Emissions: Clinker-Based Methodology

California Climate Action Registry/CSI Equation

Process CO_2 emissions = [(Cli) (EF_{Cli}) + (CKD) (EF_{CKD})]

Where:

Cli = Quantity of clinker produced

EF_{Cli} = Clinker emission factor

CKD = Quantity CKD discarded

 $EF_{CKD} = CKD$ emission factor

Direct Process CO₂ Emissions: Clinker-Based Methodology

IPCC 2006 Guidelines Equation

Process CO₂ emissions = M_{Cl} • EF_{Cli} • CF_{CKD}

Where:

 M_{Cl} = Mass of clinker produced, tons

 EF_{Cli} = Clinker emission factor, tons CO_2 /ton clinker

 CF_{CKD} = CKD correction factor, dimensionless

Clinker-Based Methodology: CKD Data

Protocol	Registry/CSI	IPCC 2006
Equation Inputs	 CKD Discarded CKD Emission Factor 	1. CKD Correction Factor
Equations	$EF_{CKD} = \frac{\frac{EF_{Cli}}{1 + EF_{Cli}} \times d}{1 - \frac{EF_{Cli}}{1 + EF_{Cli}} \times d}$	$CF_{CKD} = 1 + (M_d / M_{cl}) \cdot C_d \cdot F_d \cdot (EF_c / EF_{cl})$
Where	EF _{Cli} =Clinker Emission Factor d = CKD calcination rate	M_d = CKD M_{Cl} = Mass of Clinker C_d = Fraction of carbonate in CKD F_d = Fraction of calcination EF_C = Carbonate emission factor EF_{Cl} = Emission factor for clinker

CO₂ Emissions Estimates: Registry/CSI & IPCC 2006

Assumptions	Default Values	Plant-Specific Data
100% CKD Recycled	620,048 ton CO ₂	625,404 ton CO ₂
2% Correction Factor	632,449 ton CO ₂	637,912 ton CO ₂

Where:

Clinker = 1.2 MMT/Year Default EF_{Cli} = 525 kg CO_2 /ton clinker Plant-specific EF_{Cli} = 530 kg CO_2 /ton clinker

CO₂ Emissions Estimates: Registry/CSI & IPCC 2006

Assumptions	Registry/CSI	IPCC 2006
Default Values	744,057 ton CO ₂	669,652 ton CO ₂
Plant- Specific Data	756,984 ton CO ₂	675,436 ton CO ₂

Where:

Clinker = 1.2 MMT/Year

CKD = 254,504 ton

Default $EF_{CKD} = 499 \text{ kg CO2/ton clinker}$

Plant-specific EF_{CKD} = 529 kg CO₂/ton clinker

 $CF_{CKD} = 1.08$ (Assumes 50% CKD Calcination Rate)

CO₂ Emissions Estimates: Registry/CSI & IPCC 2006

Assumptions	Registry/CSI	IPCC 2006
Default Values	744,057 ton CO ₂	719,256 ton CO ₂
Plant- Specific Data	756,984 ton CO ₂	726,106 ton CO ₂

Where:

Clinker = 1.2 MMT/Year

CKD = 254,504 ton

Default $EF_{CKD} = 499 \text{ kg CO2/ton clinker}$

Plant-specific EF_{CKD} = 529 kg CO₂/ton clinker

CF_{CKD} = 1.16 (Assumes 100% Calcination Rate)

Direct Process Emissions: Organic Carbon in Raw Materials

CO₂ emissions from TOC in raw materials =

 $(TOC_{R.M.})$ (R.M.) (3.664)

Where:

TOC_{R.M.} = Organic carbon content of raw material (%)

R.M. = The amount of raw material consumed (t/yr)

3.664 = The CO_2 to C molar ratio

Direct Process Emissions: Organic Carbon in Raw Materials

 CO_2 emissions from TOC in raw materials =

 $(TOC_{R.M.})$ (R.M.) (3.664)

Where:

 $TOC_{R.M.} = 0.2 \% Default$

R.M. = Plant X consumes 1.9 MMT raw material per year

3.664 = The CO_2 to C molar ratio

CO₂ emissions from TOC in raw materials = 13,923 tons CO₂ (2% of CO₂ Emission Estimate)

Key Questions

- Clinker Emission Factor
 - Default Value
 - Plant-Specific
- Cement Kiln Dust (CKD)
 - CKD Discarded & Emission Factor
 - CKD Correction Factor
 - 2% CKD Correction
 - Percent Calcination CKD
- CO₂ Emissions Estimates
 - Registry/CSI
 - IPCC 2006

Additional Questions

- Do all cement plants have X-Ray Fluorescence (XRF)?
- Do any cement plants add non-carbonate raw materials to the raw meal?
- Quantify iron-oxide percent in the clinker?
- Cement kiln dust (CKD) collection process?

Cement GHG Emission Estimation Methods: Other Emission Sources

Stationary Emissions

- Non-mobile sources emitting GHGs from fuel consumption
 - Boilers, turbines, Internal combustion engines, flares, etc.
- Two methods:
 - 1. Measurement
 - Continuous Emission Monitoring System
 (CEMS) Reports
 - 2. Fuel Use calculation
 - Annual consumption

Stationary Emissions: Fuel Use Calculation

- Cement Kilns
- Non-Cement Kiln Units
- Quantity and Type of Fuel
 - Default Emission Factors
 - Plant-Specific Emission Factors
- Report Conventional and Alternative Fuels
- \bullet CO₂, CH₄, and N₂O

Stationary Emissions: Fuel Use Calculation

Total $CO_2 =$ **Emissions** (tons)

Total Annual • Emission Factor • 0.001 **Fuel Consumed**

(MM Btu) (kg CO₂/ MM Btu) (tons/kg)

Example:

3,600,000 MM Btu x 93.72 kg CO₂/MM Btu X 0.001 tons/kg

Total CO₂ Emissions = **337,392 tons CO₂**

Mobile Emissions

- On-Site
 - Off-Road Quarry Vehicles
 - Mobile Quarry Equipment
 - Trucks
 - Trains
 - Company Cars
 - Other Mobile Combustion Devices
- Annual Fuel Consumption
- Quantity and Type of Fuel

Mobile Emissions: Annual Fuel Consumption

Total = Total Annual • Emission Factor • 0.001

Emissions Fuel Consumed

(tons) (gallons) (kg CO₂/gallon (tons/kg)

Example:

10,000 gallons x 8.78 kg CO₂/gallon x 0.001 tons/kg

Total CO₂ emissions = **87.8 tons CO₂**

Fugitive Emissions: Cement Production Process

- Methane Emissions from Fuel Storage
- Sample Calculation: Power/Utility Protocol
- 4-Step Process
 - Identify the Total Tons of Coal Purchased.
 - Identify the Appropriate Emission Factor Based on Coal Origin.
 - 3. Calculate Fugitive CH₄ emissions and Convert to metric tons.
 - 4. Convert CH₄ emissions to CO₂ equivalents and sum all subtotals.

Fugitive Emissions: Cement Production Process

Total Fugitive CH₄ Emissions = Fugitive Methane Emissions (scf) $\times \frac{0.04228 lbs CH_4/scf}{2,204.6 lbs/ton}$

Fugitive Methane Emissions = 144,000 tons coal x 44.34 scf/CH₄ ton = 6,379,200 scf CH₄

Example:

Total Fugitive CH_4 emissions = 6,379,200 scf CH_4 x 1.9178

Total Fugitive CH₄ emissions = 122.34 tons CH₄

Metric Tons $CO_2e = Metric Tons GHG X GWP$

Metric Tons $CO_2e = 122.34 \times 21 = 2,569 \text{ tons } CO_2e$

Indirect Emissions: Electricity Use

- Determine annual electricity usage purchased and consumed
- 2. Apply electricity emission factor
 - 1. CO₂ eGRID subregion
 - 2. CH₄, N₂O state specific
- 3. Calculate total annual emissions (metric tons)
- 4. Convert non-CO₂ gases to CO₂ equivalent
- 5. Total all CO₂ and non-CO₂ gases

Example:

 $50,000 \text{ kWh x } 0.805 \text{ lbs CO}_2/\text{kWh} = 15.04 \text{ metric tons CO}_2$

Cement Manufacturing: Efficiency Metric

CO₂ Emissions per ton of cementious product =

Direct + Indirect CO₂ emissions from cement manufacturing

```
Own clinker gypsum, limestone,

consumed or + own clinker + CKD & clinker + cement

added to stock sold directly substitutes consumed substitutes

for blending
```

Example: 675,436 + 13,923 + 337,392 + 87.9 + 2,569 + 15.04 1,200,000

 CO_2 Emissions per ton of cement = 0.85 ton CO_2 /ton cement

Key Questions

- Facility Data
 - Age of facilities?
 - Current controls?
- Estimation Methodologies
 - Multiple options or one approach?
- Efficiency Metric

Statewide GHG Inventory for Cement Production

Current Statewide GHG Inventory for Cement

- Compiled by California Energy Commission
- Covers 1990-2004 time series
- Primarily top-down
 - Based on state-level data
 - Process emissions estimates separate from combustion estimates
 - Combustion emissions fuel-specific
- Not based on reported data from individual facilities
- Approximately 2% of total, statewide GHG emissions (2004)

2020 Emissions Limit

- Based on total, statewide emissions
 - Aggregated from all sectors
 - Equivalent to 1990 statewide level
- 2020 forecast based primarily on energy projections
 - Current 1990-2020 difference: 174 MMTCO₂e*
 - Gap between 1990 and 2020 may change

*Source: March 2006 CAT Report

Methodology for Estimating Statewide Cement Process Emissions

Process CO₂ emissions = Cli x (CaO x MWR) x CKD Where:

```
Cli = State clinker production data (thousand metric tons)
```

CaO = Lime percent content of the clinker (.65) *

MWR = Molecular Weight Ratio of CO2 to CaO (.785) **

CKD = Cement kiln dust correction factor (1.02) ***

- * Percent Lime factor (IPCC 2000 *Good Practices Guidance*)
- ** 44g (CO2) / 56g (CaO) Molecular Weight Ratio
- *** CKD correction factor (IPCC 2000 Good Practices Guidance)

Note: This is the same equation used in the current GHG inventory with updated activity data from USGS

Current Process Emissions Estimates for Cement Production

- Consists of direct emissions from calcination
- Example Calculation:

2004 Process CO₂ Emissions from calcination:

 $(12,455) \times (.65) \times (44/56) \times (1.02) /1000 = 6.49 \text{ MMTCO}_2 \text{ Eq.}$

Process CO₂ Emissions from Cement (MMTCO₂ Eq.)

1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
4.62	4.26	3.80	4.43	5.07	4.96	5.27	5.45	5.42	5.61	5.93	5.56	6.11	6.32	6.49

Source: California Energy Commission; Inventory of California Greenhouse Gas Emissions and Sinks: 1990 to 2004

Methodology for Estimating Stationary Combustion Emissions

```
Fuel Combustion CO<sub>2</sub> emissions =

(Fuel Use) x

(Fuel Heat/Fuel Use Unit) x

(% Oxidation) x

(Emission Factor)--MTCO<sub>2</sub>/Fuel Heat Unit

Where:
```

Fuel Use = fuel use data from the CEC Energy Balance Report

Fuel Heat = fuel heat values from the CEC Energy Balance Report

% Oxidation = based on IPCC

EF: MTCO₂/Fuel Heat Unit = emission factors from the IPCC

Current Combustion Estimates for Cement

 Combustion estimates for cement include natural gas, petroleum coke, and coal

Natural Gas CO₂ Emissions from Cement (MMTCO₂ Eq.)

1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
.18	.19	.17	.19	.13	.19	.19	.16	.23	.14	.16	.11	.17	.17	.18

Petroleum Coke CO₂ Emissions from Cement (MMTCO₂ Eq.)

1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
0	.05	.15	.55	.91	1.44	.60	.75	.65	.64	.79	.73	.86	.86	.86

Coal Combustion CO₂ Emissions from Cement (MMTCO₂ Eq.)

1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
?	2.45	2.08	1.88	2.21	2.17	2.65	2.34	2.22	2.96	2.87	2.72	2.84	?	?

Source: California Energy Commission; Inventory of California Greenhouse Gas Emissions and Sinks: 1990 to 2004

Note: Staff currently determining 1990, 2003, and 2004 coal combustion CO₂ emissions

Estimate of Total 2004 Emissions from Cement Production

2004 Cement Production Emissions:

6.49 MMTCO₂ Eq. from calcination process

0.18 MMTCO₂ Eq. from natural gas combustion

0.86 MMTCO₂ Eq. from petroleum coke combustion

Total 7.53 MMTCO₂ Eq. in 2004 *

 CO₂ emissions from stationary source combustion and process emissions in separate categories

^{*} Does not include combustion CO₂ emissions from Coal

Draft 2005 Emissions Estimate

- Calcination emissions based on the current methodology with updated clinker production data from USGS
- Current 2005 Draft Estimate from Calcination:
 5.97 MMTCO₂ Eq.
- Staff is currently updating CO₂ emission estimates for stationary combustion from cement manufacture

Cement GHG Emissions Verification

Next Steps and Schedule

- Final Technical Team Meeting
 - May 9, 2007
- Public Workshop
 - May 23, 2007
- Staff Report in October
- Board Hearing in December

Staff Contacts

Dana Papke - Lead Staff Cement Reporting Protocol

dpapke@arb.ca.gov (916) 323-2308

Rajinder Sahota – Lead Staff GRP and Verification

rsahota@arb.ca.gov (916) 323-8503

Johnnie Raymond – Lead Staff Cement Inventory

jraymond@arb.ca.gov (916) 324-7091

Larry Hunsaker – Lead Staff Stationary Source Inventory

Ihunsake@arb.ca.gov (916) 324-7168

GHG Mandatory Reporting Websitehttp://www.arb.ca.gov/cc/ccei/ccei.htm

ARB Contacts

Linda Murchison — Division Chief Planning and Technical Support Division Imurchis@arb.ca.gov (916) 322-5350

Richard Bode – Chief Emissions Inventory Branch rbode@arb.ca.gov (916) 323-8413

Doug Thompson – Manager Climate Change Reporting Section dthompson@arb.ca.gov (916) 322-7062

Webster Tasat – Manager Emission Inventory Analysis Section wtasat@arb.ca.gov (916) 323-4950

GHG Mandatory Reporting Website http://www.arb.ca.gov/cc/ccei/ccei.htm

